otto cycle ideal gas Related Articles

Nissan Will Phase Out Titan XD's Cummins Diesel Engine

Nissan in the long term as we prepare for the launch of the new, refreshed 2020 Titan and Titan XD Gas

New 2020 Perodua Myvi facelift soon to make debut, what to expect from the facelift?

If you take a look at Perodua’s model trend, the Myvi’s generation life cycle has been reducing

Cycle & Carriage takes pride in Daimler AG-certified Centres of Competence

Cycle & Carriage Bintang Berhad (Cycle & Carriage) has achieved a remarkable feat, scoring a

Why is my tyre shop trying to sell me nitrogen gas inflation?

shop – after the job is done, whatever it may be, the tyre shop will try to upsell you nitrogen gas

New star of JB – Upgraded Cycle & Carriage JB outlet welcomes Mercedes-Benz owners

Cycle & Carriage, together with Mercedes-Benz Malaysia, officially unveiled the newly upgraded Johor

Mercedes-Benz Malaysia awards their most hardworking dealers of 2020

The Dealer of the Year 2020.The Mercedes-Benz Malaysia Dealer of the Year 2020 award was presented to Cycle

What on earth is VW’s Budack Cycle? It’s certainly not child’s play

, which is also used in the VW Arteon.You’ve probably heard of the Otto cycle, Atkinson cycle,

Perodua to use 1.0L 3-cylinder turbo in future models, as low as 5.3L/100 km!

Rocky SUV is able to return 5.37L/100km (2WD model; 5.7L/100 km for 4WD model) based on the WLTP test cycle

NA vs Turbo: Why they say there’s no replacement for displacement

It is ideal for lab testing where the engine spins at the lowest possible rpm and the turbo provides

Unless you want your car to burn down, don’t leave these items in your parked car

This in turn would expand the gas in the lighter leading to a possible explosion.ElectronicsJust last

View More

Cycle & Carriage Bintang Malaysia resumes service centre operations

Cycle & Carriage Bintang, one of the authorized Mercedes-Benz dealers in Malaysia, has announced

Running in your new car, still relevant?

drive furtherShort trips like dropping the kids at school or heading to a local grocery store is not ideal

Elon Musk calls hydrogen cars “mind-boggingly stupid”, but BMW still believes in them

Hydrogen cars are typically hydrogen fuel cell cars which generate electricity from Hydrogen gas (H2)

Cycle & Carriage Bintang opens updated Mutiara Damansara Autohaus

When Cycle & Carriage opened its Mercedes-Benz Autohaus facility in Mutiara Damansara back in 2006

Mitsubishi teases the MI-Tech electric SUV concept

says the MI-Tech is an electric SUV but here is where it gets slightly confusing, it is powered by a gas-turbine

What’s so special about Mazda SkyActiv engines anyway?

Cycle Atkinson Cycle Miller CycleThe Otto cycle is the most conventional engine cycle.

This Subaru BRZ is under fire for drifting inside a petrol station

the station has greatly violated Health, Safety, Security and Environmental (HSSE) protocol.Oil and gas

Are electric vehicles (EV) truly cleaner than combustion-engine cars?

In these countries and regions, electric vehicles cannot always reduce CO2 over the life cycle of vehicles.However

2020 Hyundai Kona, worth paying more over a Honda HR-V and Proton X50?

Interestingly, the Konas 1.6 Turbo engine is able to operate in two engine cycles – the conventional Otto

Mazda CX-30 vs Mazda 3 – Should you trade higher seating position for better handling?

timing.A rear that you just want to follow behindIt’s high compression 13.0:1 that switches between Otto

​​​​​​​Honda City: Still a better buy over the Toyota Vios?

The HR-V Hybrids combustion cycle is purely Otto cycle (conventional) while the City Hybrid runs on the

Tanjong Pagar BMW M4 crash: Was it really going at 220 km/h?

In ideal conditions, 220 km/h is very possible for the BMW M4 in that stretch of road.The formula in

Cycle & Carriage Bintang has opened its doors to its Alor Setar Autohaus

Cycle & Carriage Bintang Berhad (C&C) and Mercedes-Benz Malaysia’s (MBM) has opened its

Will Geely make a 2-cylinder engine next? This is CEVT powertrain boss’ answer

turbocharged 1.5-litre MPI engine used in lower variants of the Proton X50 however, runs on Atkinson cycle

Mitsubishi Tritons are used to pave the way for gas pipeline works in Sarawak

Tritons are deployed to transport workers of Samling Group around rough roads to carry out work for their gas

Honda City 1.0L Turbo, engine review: Should Malaysians demand for this new engine?

its class.Frugal yet packing a punch, the only complaint with the City Hybrid is that the Atkinson cycle

Worried about your car battery going flat during MCO? Here's how to prevent it

These deposit overtime due to reaction of hydrogen gas released from the battery with the connectors

You can now have your Mercedes-Benz serviced at your doorstep during the MCO

Cycle & Carriage Bintang Berhad (C&C) has dispatched its Mercedes-Benz Star Mobile to bring customers

Tiny turbo engines: good or bad?

A: The exhaust gas spins the turbine. The turbine spins the compressor.

UK brings forward petrol and diesel cars ban from 2035 to 2030

As part of the United Kingdoms efforts to reduce the nations greenhouse gas emissions, the countrys Prime

otto cycle ideal gas Related Images

otto cycle ideal gas Related Car Videos

  • Otto Cycle Ideal Gas -otto Cycle Ideal Gas-Mechanical Engineering Thermodynamics - Lec 4, Pt 2 Of 3: Enthalpy And Internal Energy

  • Otto Cycle Ideal Gas-What Is The Otto Cycle?

  • Otto Cycle Ideal Gas-Mechanical Engineering Thermodynamics - Lec 16, Pt 5 Of 6: Stirling Cycle Introduction

  • Otto Cycle Ideal Gas-The Otto Cycle

  • Otto Cycle Ideal Gas -otto Cycle Ideal Gas-Mechanical Engineering Thermodynamics - Lec 16, Pt 1 Of 6: Ideal Otto Cycle

  • Otto Cycle Ideal Gas-GATE 16 Gas Turbine Cycle - I

  • Otto Cycle Ideal Gas-Mod-01 Lec-17 Gas And Vapour Power Cycles, Otto Cycle, Diesel Cycle, Dual Cycle

  • Otto Cycle Ideal Gas -otto Cycle Ideal Gas-0034 - Modeling Reciprocating Engines

  • Otto Cycle Ideal Gas-Mechanical Engineering Thermodynamics - Lec 16, Pt 3 Of 6: Ideal Diesel Cycle

  • Otto Cycle Ideal Gas-Air-standard Analysis Of Otto And Diesel Cycles: Thermodynamics Example Question

otto cycle ideal gas Post Review

Always assume ideal gas in Otto Cycle, they saidCv=(5/2)R, they said

"It's left to the reader to corroborate that for an ideal gas with temperature independent heat capacities, the Otto Cycle efficiency is(...)"

otto cycle kena tengok table A-17 , ideal gas properties. (Y)

Masih berpusing2 dg IdeaL Gas Turbine, Otto cycLe, dan DieseL CycLe...,yuk,.itung...itung.-itung.! *Semangat mode On :D :D

otto cycle ideal gas Q&A Review

How do diesel engines run without spark plugs?

All the answers look good, but let me inject some basic textbook concepts. The traditional gasoline engine is an Otto Cycle engine, named after Nikolaus Otto. The diesel engine, named after Rudolf Diesel, uses the Diesel Cycle. The ,cycles, in these cases refer to a graph of pressure versus volume as one cylinder goes through its 2 or 4 strokes and is ready to repeat. In the idealized Otto Cycle, air is compressed, then heat is added quickly--at constant volume--when the spark plug detonates the mixture. The heat raises the pressure, so that work will be done as the heated air expands in the power stroke. In the idealized diesel cycle, the compressed air is hot enough to start combustion, then the fuel is added over a non-zero time during the power stroke so that the gas is heated at constant pressure during part of the power stroke. To an engineer, the idealized cycle defines each type of engine. When the air in the cylinder is hot enough to ignite the diesel fuel, then the time of fuel burning is controlled by the time during which the injector sprays a mist of fuel. The Otto cycle calls for quick burning, so the air and fuel can be pre-mixed, ready to burn ASAP when the spark plug sparks. If you can gradually absorb the idea of the idealized cycles, then you can read Wikipedia articles on different interesting engines. For example, some current Ford hybrid cars have Atkinson-cycle engines. They are like Otto cycle engines, but less air is taken in during the cycle, which raises efficiency. Wikipedia has an article called ,Heat engine, which will give you links to other articles on specific idealized cycles. Traditional Otto Cycle engines depend on keeping the air/gasoline ratio in a range where the flame will propagate after it's ignited by the spark. In diesel engines, the air/fuel ratio is not a critical parameter in the same way. Of course more recent gasoline engines use new technologies to bend the old rules and save fuel.

How is the actual P-V diagram of a 4 stroke SI engine different from the theoretical one?

It is not very different if you do Finite heat transfer model (Thermally variable properties). If you compare with Otto cycle directly, there are tons of differences as that's no way realistic (ideal gas, Constant properties, uniform composition etc.). But I did experiments with the variable property models and they are very alike (for ensemble averaged characteristics).

What is difference between otto and diesel cycle?

In simplest terms the Otto cycle is an internal combustion engine that compresses a mix of vaporized fuel and air in a cylinder through the rise of the piston stroke. Then ignites the mixture with a spark of electricity so that it burns explosively just before maximum compression. This can be done with either four stroke or two stroke engines. In order to run safely an Otto cycle engine must use a fuel that vaporizes easily, and it must not compress the fuel to the auto ignition temperature for that fuel. This compression limit is commonly described as the Octane rating. The higher the Octane rating the more the vaporized fuel air mixture can be compressed before it will auto ignite without the sparkplug igniting it at the correct time. Low octane gasoline has an Octane rating of 87 at most American gas stations while E-85 fuel has an Octane rating of 105. This makes E-85 fuel suitable for high compression Otto cycle engines with the correct fuel system components. Diesel cycle engines are internal combustion engines that compresses air with no fuel in it to a very high pressure which causes the temperature of the air to rise. This effect is known as Boyle’s Law, compressing a gas causes it to heat up and decompressing a gas causes it to cool down. Because the air has no fuel vapor mixed in it you can compress it to a very high pressure which causes it to grow very hot. In a Diesel cycle engine a fuel injector sprays a very fine mist of liquid fuel into the cylinder just as the gas reaches maximum heat and the heat causes the mist to burn very rapidly. The spray of mist is a very short spurt, but in that short time the burning fuel heats the air in the cylinder and keeps it very hot even as the cylinder volume expands as the piston goes back down. This steady high pressure lasts for most of the down stroke and provides great torque to the drive shaft. Much like Otto cycle engines a Diesel cycle engine can also be two stroke or four stroke with two stroke engines often given catchy names like ‘Power Stroke’ because every compression cycle leads to a power cycle. A four stroke cycle has a compression upward stroke, downward power stroke, upward exhaust stroke, downward intake stroke. By careful design a two stroke engine combines the bottom of the stroke into an exhaust/intake event by forcing fresh intake air into the top of the cylinder under pressure that forces exhaust gasses out the bottom of the cylinder through a side valve. You should also be aware that Otto cycle engines are not the only design intended to use easily vaporized fuels like gasoline or alcohol. The alternative gasoline design is the Wankel engine that uses lobed chambers instead of cylinders and pistons. This permits the engine to constantly turn through a cycle instead of forcing the pistons to reverse direction every half cycle.

A closed system contains an ideal gas that expands to a fixed final volume. If the ideal gas can expand either at constant pressure or constant temperature, which of these two processes will produce the largest amount of work?

Most of the power is delivered along the high temperature isothermic expansion in the Carnot Engine. Most of the work is done on the engine during the isothermic compression See ,Four-stroke engine, for the Otto Cycle and ,Carnot cycle, for the Carnot Engine.

Why do we use otto cycle for petrol engine?

Otto Cycle is an idealized cycle and is based upon some assumptions: Gas and air mixture are modeled as air and an ideal gas, which continuously circulates in a closed cycle. Thus, there are no intake and exhaust processes. All the processes making up the cycle are internally reversible. The combustion process is replaced by a heat-addition process from an external source. The exhaust process is replaced by a heat-rejection process and the gas returns to its initial state. petrol engines have an compression ratio of 6 to 10. The efficiency of Otto engine is function of compression ratio only. The higher the compression ratio the higher the efficiency of Otto Cycle. Where as Compression ratio is a function of fuel, engine design, and operating conditions. k= specific heat ratio The thermal efficiency curve is rather steep at low compression ratios but flattens out starting when r=6,,, increase in thermal efficiency with r is not that pronounced at high compression ratio. also when r increases temperature of fuel air mixture rises above self ignition temperature of fuel . When the mixture ignites without spark causing an early and rapid combustion of fuel ahead of flame front, followed by almost instantaneous burning of remaining mixture. This prominent ignition of fuel is called auto ignition and produces an audible noise called knocking. So to prevent that condition ,,,, we use Otto cycle for SI engines.

What is otto cycle?

There are certain assumptions for air that we need to consider before studying the Otto cycle. It starts with the working fluid, which is air. It continuously circulates in a closed cycle. Air is considered as an ideal gas. All the processes in (ideal) power cycles are internally reversible. Combustion process is modeled by a heat-addition process from an external source. The exhaust process is modeled by a heat-rejection process that restores the working fluid (air) at its initial state. Finally, specific heats are assumed to be constant @25°C for air. We'll look at the Otto Cycle using Processes. Process 0: a mass of air is drawn into piston/cylinder arrangement at constant pressure. Process 1 is an adiabatic (isentropic) compression of the charge as the piston moves from bottom dead centre (BDC) to top dead centre (TDC). Process 2–3 is a constant-volume heat transfer to the working gas from an external source while the piston is at top dead centre. This process is intended to represent the ignition of the fuel-air mixture and the subsequent rapid burning. Process 3–4 is an adiabatic isentropic expansion also called the power stroke. Process 4–1 completes the cycle by a constant-volume process in which heat is rejected from the air while the piston is at bottom dead centre. In the final process Process 1–0 the mass of air is released to the atmosphere in a constant pressure process. . Hence, We first saw what the air cycle assumptions are and then saw what the otto cycle is?

Why are the constant quantities during heat addition different in Otto and diesel cycle?

The Otto cycle idealizes the operation of a SI (spark ignition) engine where a spark at the end of compression ignites the fuel air mixture (mixed in the engine port or carburettor), which burns almost instantaneously, raising the temperature and pressure. This can be modeled as a constant volume heat addition. Whereas the diesel cycle idealizes the operation of a CI (compression ignition engine) where the air is compressed to a high pressure to cause ignition when fuel is injected into it in a fine spray, which causes a high pressure flame front that travels forward and burns the fuel while pushing the piston forward. This can be modeled as a constant pressure heat addition. In real engines, there are always losses and delays leading to thermodynamic inefficiency, and the P-V diagram does not exactly follow the "constant" lines. For more details, see these references: Engines: An Introduction: John L. Lumley: 9780521644891: Amazon.com: Books Internal Combustion Engines: Theory and Design; A Text Book on Gas-And Oil-Engines for Engineers and Students in Engineering (Classic Reprint): Robert L. Streeter: Amazon.com: Books Internal Combustion Engine Fundamentals: J. Heywood: 9781259002076: Amazon.com: Books

Can you draw 4 and 2 strokes Otto and Diesel cycles (ideal and real cycles)?

Yes. Four Stroke: GAS POWER CYCLE Two Stroke: Overall: Difference between actual and theoretical Otto cycle Comparison between the three theoretical cycles

What is the reason for distinguishing the working fluids associated with thermodynamics as pure substances and ideal fluids?

Ideal fluid, I think you mean ideal gas. Otherwise, it is not true. The reason is that there are two classification of thermodynamic cycles Gas-power cycle -which uses gas (or in thermodynamic analysis, ideal gas) as working fluid (Otto cycle, Diesel cycle, Brayton cycle, Ericson cycle etc.) Vapour-power cycle-which is based on phase change of fluid, and uses vapour as working fluid. (Rankine cycle, Refrigeration cycle etc.)